Abstract

We have developed a model for calculating saturated absorption spectra for dipole transitions in multi-level atoms. Using a semiclassical density matrix formalism, we derive a set of coupled differential equations for the internal state of the atom in a standing wave light field. The equations are solved using standard integration techniques. The absorption at each laser detuning is found from an average of the absorption for a number of velocities along the laser field, thermally weighted. The method is relatively efficient computationally yet quantitatively predicts important details of saturated absorption spectra including saturation, crossover resonances, merging of absorption lines at high intensity and optical pumping between hyperfine levels. We have measured saturated absorption and fluorescence spectra of 85Rb, and compare to our computational results for a 36-level model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.