Abstract

AbstractThe CNO2 bond dissociation energies (BDEs) and the heats of formation (HOFs) of nitromethane and polynitromethanes (dinitromethane, trinitromethane, and tetranitromethane) system in gas phase at 298.15 K were calculated theoretically. Density functional theory (DFT) B3LYP, B3P86, B3PW91, and PBE0 methods in combination with different basis sets were employed. It was found that the CNO2 bond BDEs can be improved from B3LYP to B3PW91 to B3P86 or PBE0 functional. Levels of theory employing B3P86 and PBE0 functionals were found to be sufficiently reliable without the presence of diffusion functions. As the number of NO2 groups on the same C atom increases, the PBE0 functional performs better than the B3P86 functional. Regarding the calculated HOFs, all four functionals can yield satisfactory results with deviations of <2 kcal mol−1 from experimental ones for CH2(NO2)2 and CH(NO2)3, when the diffusion functions are not augmented. For the C(NO2)4 molecule, the large basis sets augmented with polarization functions and diffusion functions are required to yield a good result. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.