Abstract

The composite girder, which combines a steel beam with an ultra-high-performance concrete (UHPC) slab, has gained significant attention in recent years as a new type of bridge structure. However, accurately estimating the bending capacity of such girders remains a challenge, as practical methods are limited. In this article, the authors propose a theoretical approach based on the Euler-Bernoulli beam theory to determine the bending capacity of composite girders. This approach considers the assumptions of plane sections remaining plane and infinitesimal strains during bending. By applying this theoretical approach, the authors derive a formula that allows engineers to calculate the bending capacity of the composite girder. The formula takes into account the dimensions and properties of both the steel beam and the UHPC slab. The derived formula serves as a valuable tool for evaluating the structural behavior and performance of composite girders. To validate its accuracy, the authors compare the results obtained from their calculations with numerical simulations of composite girder failures caused by bending. The close agreement between the theoretical calculations and the numerical simulation results confirms the reliability and applicability of the proposed formula. This research significantly contributes to the field of composite girder design by providing a practical and reliable method for estimating the bending capacity of steel beam-UHPC slab composite girders. The proposed theoretical approach, validated through numerical simulations, offers valuable insights for the design and optimization of these composite girders in various engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call