Abstract

AbstractThin-wall shells (steel plates, steel cylindrical shells, steel spherical shells, etc.) are widely used in many engineering fields such as construction, machinery, chemical industry, navigation, and aviation because of their light weight and high strength. Their failure modes under static pressure or impact dynamic load are mostly buckling instability, and the failure is very sudden, often causing structural failure or even catastrophic accidents without obvious symptoms. In this framework, the significance of this paper is that it considers the influence of external environment corrosion on steel shells' bearing capacity using plate and shell classical stability theory, and investigates the stable bearing capacity of thin-wall steel shells in view of corrosion impact. By this approach, a theoretical calculating method for the time-varying stable bearing capacity of plate and shell thin-walled steel members under the simultaneous action of corrosion and temperature changes is obtained, providing a useful theory for complex engineering practices such as corrosion and temperature changes, including fire actions. Noted that for this method with no analytical solution found, its numerical solutions are given in the appendixes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.