Abstract

Using a previously developed phase field modeling method, where interface energies are described by spherical gaussians that allow the modeling of complex anisotropies, a new phase field model was developed to model 5-D anisotropy in polycrystalline grain growth. We present the use of quaternions, assigned to individual grains as orientations and misorientations for grain boundaries, as a means of simulating the ongoing mesoscale changes during anisotropic polycrystalline grain growth. The full 5-D landscape is scanned in MATLAB, and the grain boundary (GB) energy of each grain boundary is calculated from the continuous function developed by Bulatov et al. MATLAB is then used to find all local minima in the GB energy which are stored for use in the phase field model. The methodology of including these minima in the phase field model involves using 2-D gaussian switches, which match the misorientation between grains with misorientations for the GB energy minima. Within a threshold range of the minima misorientation, the switch activates a spherical Gaussian to set the GB energy to the desired value creating in combination a full 5D GB energy space. This creates a GB energy that morphs in real time and space as the GB plane or grain orientations change. Implementation methods of the model are outlined for the Multiphysics Object Oriented Simulation Environment (MOOSE), where reduced order parameters still retain individual grain identification useful for individually assigned quaternions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call