Abstract

AbstractInductance gradient, an important parameter that affects the performance of electromagnetic rail launcher, is mainly determined by the geometrical shape of the launcher. This study therefore intends to analyze the influence of the rail’s height and width on the inductance gradient, with the area of the cross-section of the guiding rail fixed. The study finds that the maximum inductance gradient peaks when the guiding rail section is rectangular (i.e., its width is greater than height) under both the high- and low-frequency circumstances. Attempts are also made to establish arithmetic models for forcing and masses of the launch load with a pulsed current. The optimum rail separation is thereupon derived at high- and low-frequency, respectively, to maximize the initial velocity of the effective payload. The results show that the rectangular aperture launcher with rail separation greater than rail height can maximize the initial velocity of payload.KeywordsInductance gradientElectromagnetic rail launcherGeometrical shapeOptimization

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.