Abstract
Hinge-type molecular models for electron donors in reaction centers of Photosystems I and II and purple bacteria were investigated using a two-state computational approach based on frozen-density embedding (FDE). This methodology, dubbed FDE-diab, is known to avoid consequences of the self-interaction error as far as intermolecular phenomena are concerned, which allows a prediction of qualitatively correct spin densities for large biomolecular systems. The calculated spin density distributions are in a good agreement with available experimental results and demonstrated a very high sensitivity to changes in the relative orientation of cofactors and amino acid protonation states. This allows a validation of the previously proposed hinge-type models providing hints on possible protonation states of axial histidine molecules.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.