Abstract
The current review proclaims the forced convective flow and heat–mass transfer characteristics of cross nanofluid past a bidirectional stretched surface. The most significant aim of the current review is to incorporate the features of Buongiorno relation, activation energy, nonlinear thermal radiation and heat sink–source for a three-dimensional flow of the cross fluid. Appropriate transformations are employed to transform the modelled partial differential equations (PDEs) of momentum, temperature and concentration into coupled nonlinear ordinary differential equations (ODEs). The governing boundary value problem is numerically integrated with the help of bvp4c scheme. The obtained numerical data are plotted for the temperature and concentration profiles of nanofluid for various converging values of physical parameters. The dependence of increasing thermophysical parameters on temperature and concentration profiles of the cross nanofluid is graphically demonstrated. Furthermore, detailed study reveals that the concentration of the cross nanofluid decreases for increasing values of Brownian motion parameter. It is also perceived from the sketches that the concentration of the cross nanofluid decreases for higher values of chemical reaction parameter. The validity of the achieved numerical outcomes is ensured by making a comparison with the existing work as special cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.