Abstract

Features of electron transfer involving complex molecules are discussed. This notion presently refers to molecular reactants where charge transfer is accompanied by large molecular reorganization, and commonly used displaced harmonic oscillator models do not apply. It is shown that comprehensive theory of charge transfer in polar media offers convenient tools for the treatment of experimental data for such systems, with due account of large-amplitude strongly anharmonic intramolecular reorganization. Equations for the activation barrier and free energy relationships are provided, incorporating vibrational frequency changes, local mode anharmonicity, and rotational reorganization, in both diabatic and adiabatic limits. Systems for which this formalism is appropriate are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.