Abstract
Learning processes play an important role in enhancing understanding and analyzing real phenomena. Most of these methodologies revolve around solving penalized optimization problems. A significant challenge arises in the choice of the penalty hyperparameter, which is typically user-specified or determined through Grid search approaches. There is a lack of automated tuning procedures for the estimation of these hyperparameters, particularly in unsupervised learning scenarios. In this paper, we focus on the unsupervised context and propose a bi-level strategy to address the issue of tuning the penalty hyperparameter. We establish suitable conditions for the existence of a minimizer in an infinite-dimensional Hilbert space, along with presenting some theoretical considerations. These results can be applied in situations where obtaining an exact minimizer is unfeasible. Working on the estimation of the hyperparameter with the gradient-based method, we also introduce a modified version of Ekeland’s principle as a stopping criterion for these methods. Our approach distinguishes from conventional techniques by reducing reliance on random or black-box strategies, resulting in stronger mathematical generalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.