Abstract

The reversible logic gate is a great choice for designing various types of optical processors due to so many advantageous aspects of it; such as low power consumption and the ability of data recovery. At first, the optical circuit of Fredkin gate, a universal reversible logic gate, is designed theoretically using a semiconductor optical amplifier (SOA)-based polarization switch, and the performance of the circuit is studied using simulated results. The frequency-encoded binary data are used to execute the operations. Subsequently, we propose the techniques of developing NOT, AND, OR, EX-OR, EX-NOR gates, and full adder circuit using reversible Fredkin gates. Finally, we develop an optical arithmetic logic unit using the proper combination of reversible Fredkin gates. The theory of nonlinear polarization rotation of the probe beam in the presence of the pump beam in SOA is adopted here. The simulated input–output spectra of the optical circuits enhance the admissibility of the proposed concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call