Abstract
With an appropriate mixture of cyclometalating and ancillary ligands, based on simple structures (commercial or easily synthesized), it has been possible to design a family of eight new Ir(III) complexes (1A, 1B, 2B, 2C, 3B, 3C, 3D and 3E) useful as luminescent materials in LEC devices. These complexes involved the use of phenylpyridines or fluorophenylpyridines as cyclometalating ligands and bipyridine or phenanthroline-type structures as ancillary ligands. The emitting properties have been evaluated from a theoretical approach through Density Functional Theory and Time-Dependent Density Functional Theory calculations, determining geometric parameters, frontier orbital energies, absorption and emission energies, injection and transport parameters of holes and electrons, and parameters associated with the radiative and non-radiative decays. With these complexes it was possible to obtain a wide range of emission colours, from deep red to blue (701–440 nm). Considering all the calculated parameters between all the complexes, it was identified that 1B was the best red, 2B was the best green, and 3D was the best blue emitter. Thus, with the mixture of these complexes, a dual host–guest system with 3D-1B and an RGB (red–green–blue) system with 3D-2B-1B are proposed, to produce white LECs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.