Abstract

Recently, the cathode-like luminescence phenomena are observed from the surface of solid dielectrics under steady-state high voltage excitation in vacuum, which is closely related to the self-stabilizing secondary electron emission (SSEE) occurring on insulator surface. In this paper, the theoretical analysis about surface charging based on the SSEE is made, and a one-dimensional Mont Carlo simulation on surface charge accumulation under DC voltage excitation is provided. The results reveal that surface charging process can be divided into three stages including initial accumulation, fast multiplication, and final stable stage. In the final stage, the SSEE phenomena are achieved and surface charges are invariable and reach up to a stable distribution. The simulated stable surface charge distribution is consistent with the theoretical deduction results, which confirms the existence of SSEE process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.