Abstract

In this study, we present a new equation of state for electrolyte solutions, integrating the statistical associating fluid theory for variable range interactions utilizing the generic Mie form and binding Debye-Hückel theories. This equation of state underscores the pivotal role of ion-ion association in determining the properties of electrolyte solutions. We propose a unified framework that simultaneously examines the thermodynamic properties of electrolyte solutions and their electrical conductivity, given the profound impact of ion pairing on this transport property. Using this equation of state, we predict the liquid density, mean ionic activity coefficient, and osmotic coefficient for binary NaCl, Na2SO4, and MgSO4 aqueous solutions at 298.15K. Additionally, we evaluate the molar conductivity of these systems by considering the fraction of free ions derived from our equation of state in conjunction with two advanced electrical conductivity models. Our results reveal that, while ion-ion association has a minimal influence on the modification of the predicted properties of sodium chloride solutions, their impact on sodium and magnesium sulfate solutions is considerably more noticeable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.