Abstract

We investigate lamellar three-phase patterns that form during the directional solidification of ternary eutectic alloys in thin samples. A distinctive feature of this system is that many different geometric arrangements of the three phases are possible, contrary to the widely studied two-phase patterns in binary eutectics. Here, we first analyze the case of stable lamellar coupled growth of a symmetric model ternary eutectic alloy, using a Jackson-Hunt-type calculation in thin film geometry, for arbitrary configurations, and derive expressions for the front undercooling as a function of velocity and spacing. Next, we carry out phase-field simulations to test our analytic predictions and to study the instabilities of the simplest periodic lamellar arrays. For large spacings, we observe different oscillatory modes that are similar to those found previously for binary eutectics and that can be classified using the symmetry elements of the steady-state pattern. For small spacings, we observe a new instability that leads to a change in the sequence of the phases. Its onset can be well predicted by our analytic calculations. Finally, some preliminary phase-field simulations of three-dimensional growth structures are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.