Abstract

This paper examines the theoretical, analytical, and approximate solutions of the Caputo fractional Volterra-Fredholm integro-differential equations (FVFIDEs). Utilizing Schaefer's fixed-point theorem, the Banach contraction theorem and the Arzel\`{a}-Ascoli theorem, we establish some conditions that guarantee the existence and uniqueness of the solution. Furthermore, the stability of the solution is proved using the Hyers-Ulam stability and Gronwall-Bellman's inequality. Additionally, the Laplace Adomian decomposition method (LADM) is employed to obtain the approximate solutions for both linear and non-linear FVFIDEs. The method's efficiency is demonstrated through some numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.