Abstract

<p style='text-indent:20px;'>Energy estimates of the shallow water equations (SWEs) with a transmission boundary condition are studied theoretically and numerically. In the theoretical part, using a suitable energy, we begin with deriving an equality which implies an energy estimate of the SWEs with the Dirichlet and the slip boundary conditions. For the SWEs with a transmission boundary condition, an inequality for the energy estimate is proved under some assumptions to be satisfied in practical computation. In the numerical part, based on the theoretical results, the energy estimate of the SWEs with a transmission boundary condition is confirmed numerically by a finite difference method (FDM). The choice of a positive constant <inline-formula><tex-math id="M1">\begin{document}$ c_0 $\end{document}</tex-math></inline-formula> used in the transmission boundary condition is investigated additionally. Furthermore, we present numerical results by a Lagrange-Galerkin scheme, which are similar to those by the FDM. The theoretical results along with the numerical results strongly recommend that the transmission boundary condition is suitable for the boundaries in the open sea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.