Abstract

A constitutive model for C45 steel alloys is proposed in this work by integrating the effect of damage and a specific phenomenon, so-called dynamic strain aging. For damage modeling, an energy-based isotropic damage model is implemented within a frame of continuum damage mechanics. The total stress is decomposed into athermal and thermal elements. The former includes the additional term for dynamic strain aging. This term is conceptually inspired by the probabilistic nature of dynamic strain aging, and its derivation is micromechanics-based. Both athermal and thermal components are defined as a function of temperature, equivalent plastic strain, and equivalent plastic strain rate because the occurrence and characteristics of dynamic strain aging are dependent on these factors. A finite element solution for the developed model is addressed additionally to further investigate the characteristics of plastic-damage behaviors and dynamic strain aging. The numerical results are compared to the experiments and theoretical predictions for its validation. The modified model developed in this work has largely reduced the number of fitting parameters compared to the previous model originally developed by the authors in 2019. Nevertheless, predictions from the proposed model still capture the experimental data accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.