Abstract

A constitutive model for C45 steel alloys is proposed in this work by integrating the effect of damage and a specific phenomenon, so-called dynamic strain aging. For damage modeling, an energy-based isotropic damage model is implemented within a frame of continuum damage mechanics. The total stress is decomposed into athermal and thermal elements. The former includes the additional term for dynamic strain aging. This term is conceptually inspired by the probabilistic nature of dynamic strain aging, and its derivation is micromechanics-based. Both athermal and thermal components are defined as a function of temperature, equivalent plastic strain, and equivalent plastic strain rate because the occurrence and characteristics of dynamic strain aging are dependent on these factors. A finite element solution for the developed model is addressed additionally to further investigate the characteristics of plastic-damage behaviors and dynamic strain aging. The numerical results are compared to the experiments and theoretical predictions for its validation. The modified model developed in this work has largely reduced the number of fitting parameters compared to the previous model originally developed by the authors in 2019. Nevertheless, predictions from the proposed model still capture the experimental data accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call