Abstract

Abstract Supersonic gas injection can help deliver gas uniformly to a reservoir, regardless of reservoir conditions. This technology has played a key role in enhanced oil recovery (EOR) and in particular, thermal enhanced oil recovery operations. Most previous studies have focused on single phase gas injection whereas in most field applications, multiphase and multicomponent situations occur. In the research documented in this paper, we report on results of evaluations of compressible multiphase supersonic gas flows in which gas is the continuous phase is seeded with dispersed liquid droplets or solid particles. Theoretical derivation and numerical simulations with and without relative motions between continuous and disperse phases are examined first. The results illustrate that the shock wave structures and flow properties associated with the multiphase gas flows are different than that of single-phase isentropic flows. The existence and importance of relaxation zones after the normal shock wave in multiphase flow is described. Numerical computational fluid dynamics (CFD) simulations are conducted to show how the multiphase multicomponent flow affects gas phase injection under different conditions. The impact of solid/liquid mass loading on flow performance is discussed. Finally, the practical application of the findings is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.