Abstract

Diffusive instabilities of the Mullins-Sekerka type are one of the principal mechanisms through which microstructures form during solidification. In this study, we perform a linear stability analysis for the perturbation of a planar interface, where we derive analytical expressions to characterize the dispersion behavior in multi-component alloys under directional and isothermal solidification conditions. Subsequently, we confirm our calculations using phase-field simulations for different choices of the inter-diffusivity matrices. Thereafter, we highlight the characteristics of the dispersion curves upon change of the diffusivity matrix and the velocity. Finally, we also depict conditions for absolute stability of a planar interface under directional solidification conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.