Abstract

To investigate the sensitivity of the overall mechanical performance of steel–concrete composite beam bridges (SCCBBs) to different types of damage, this paper proposes a method of analyzing the sensitivity of SCCBBs to damage based on the extremely randomized trees (ET) algorithm in machine learning. A steel–concrete composite continuous beam bridge was used as the engineering basis, and the finite element method was used to analyze the changes in the static and dynamic response of the bridge caused by seven types of damage. The proposed SCCBB damage sensitivity analysis theory was used to explore the sensitivity factors of the seven types of damage. The results show that microcracks in steel beams have the most significant impact on the mechanical performance sensitivity of SCCBBs, followed by the concrete slab stiffness degradation and bridge deck breakage. The sensitivity of the damage caused by transverse diaphragms and bridge pier stiffness degradation is relatively low, while the sensitivity of stud fractures and bearing damage is minimal. The impact factors of damage sensitivity were 0.51, 0.19, 0.13, 0.08, 0.05, 0.03 and 0.01. This research can provide a reference for the damage classification of SCCBBs with multiple damage interlacing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.