Abstract
The present work is motivated by the recent experimental realization of the Townes soliton in an effective two-component Bose-Einstein condensate by B. Bakkali-Hassan et al. [Phys. Rev. Lett. 127, 023603 (2021)]. Here, we use a similar multicomponent platform to exemplify theoretically and numerically, within the mean-field Gross-Pitaevskii framework, the potential toward the experimental realization of a different fundamental wave structure, namely the Peregrine soliton. Leveraging the effective attractive interaction produced within the mixture's minority species in the immiscible regime, we illustrate how initialization of the condensate with a suitable power-law decaying spatial density pattern yields the robust emergence of the Peregrine wave in the absence and in the presence of a parabolic trap. We then showcase the spontaneous emergence of the Peregrine soliton via a suitably crafted wide Gaussian initialization, again both in the homogeneous case and in the trap scenario. It is also found that narrower wave packets may result in periodic revivals of the Peregrine soliton, while broader ones give rise to a cascade of Peregrine solitons arranged in a so-called Christmas-tree structure. Strikingly, the persistence of these rogue-wave structures is demonstrated in certain temperature regimes as well as in the presence of transversal excitations through three-dimensional computations in a quasi-one-dimensional regime. This proof-of-principle illustration is expected to represent a practically feasible way to generate and observe this rogue wave in realistic current ultracold atom experimental settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.