Abstract
A microalgal cell model with multiple organelles considering both the irregular overall shape and internal microstructure was proposed. The radiative properties of Parachlorella kessleri during the normal phase, starch-rich phase, and lipid-rich phase were calculated by the discrete dipole approximation method in the visible wavelengths. The accuracy of the model is verified with experimental measurements. The results showed that the theoretical calculation of the established microalgal cell model is more accurate than those of the equal volume spheres, such as the homogeneous sphere and the coated sphere, with the errors of the scattering cross-section reduced by more than 10.7%. The calculated scattering phase function of the multi-component model is basically in good agreement with the experimental results. Compared to the normal growth phase, the lipid enrichment during the lipid-rich phase leads to a sharp increase in the scattering cross-section by three to four times, while the absorption cross-section remains stable. Remarkably, in the starch-rich phase, the abundant production of starch results in a reduction of two to three times in the absorption cross-section compared to the normal growth phase, while the scattering cross-section varies little. The results can provide basic data and theoretical support for the design and optimization of photobioreactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.