Abstract
A polymeric precursor method was used to synthesize BaTiO 3 amorphous thin film processed at low temperature. The luminescence spectra of BaTiO 3 amorphous thin films at room temperature revealed an intense single-emission band in the visible region. The visible emission band was found to be dependent of the thermal treatment history. Photoluminescence (PL) properties for different annealing temperatures were investigated. It was concluded that the intensity of PL is strongly dependent on both the heat treatment of the films and the presence of an inorganic disordered phase. Experimental optical absorption measurements showed the presence of a tail. These results are interpreted by the nature of these exponential optical edges and tails, associated with defects promoted by the disordered structure of the amorphous material. We discuss the nature of visible PL at room temperature in amorphous barium titanate in the light of the results of recent experimental and quantum mechanical theoretical studies. Our investigation of the electronic structure involved the use of first-principle molecular calculations to simulate the variation of the electronic structure in the barium titanate crystalline phase, which is known to have a direct band gap, and we also made an in-depth examination of amorphous barium titanate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.