Abstract

The present study consists in the development of an analytical model and the performance of 180° peeling tests aimed at evaluating the interfacial adhesive properties of graphite electrodes of lithium–ion batteries in different charging/discharging states. In order to determine the interfacial peeling strength, uniaxial tensile tests were conducted and an analytical model was used to obtain the elastic modulus of copper foil and the graphite active layer in different charging/discharging states. Results of the application of the interfacial peeling strength analytical model indicate that the interfacial peeling strength between graphite active layer and current collector does not depend exclusively on the energy release rate but also on the strain energy stored in the collector as a consequence of the expansion of the active layer associated with the insertion within it of lithium ions. The results of the 180° peeling tests indicate that the interfacial peeling strength of the fully charged electrode is larger than the corresponding parameters measured in the fresh, soaked, and fully discharged electrodes. The predictions based on the analytical model and the experimental data collected on the interfacial peeling strength are in good agreement with each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.