Abstract

In this work, we investigate the dynamics of photo-excited carriers in ZnO. Specifically, we study the luminescence spectrum and the effect of temperature on the luminescence rise time. For comparison, experimental time- resolved photo-luminescence studies on ZnO samples are performed. In the theoretical model, interaction with a laser pulse is treated coherently and a generalized Monte Carlo simulation is used to account for scattering processes. The scattering mechanisms included are carrier interactions with polar optical phonons and acoustic phonons, and carrier–carrier Coulomb interactions. We observed a good agreement between the experimental and simulation results for the photo-luminescence spectrum. Furthermore, as the temperature increases, the luminescence rise time decreases, mostly due to the weaker effect of polar optical scattering at lower temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call