Abstract

The self-assembled multilayers have been studied by many researchers to modify the surfaces of artificial implants for increasing biocompatibility. The accurate mechanical properties of the film can only be obtained from the experimental results using appropriate theoretical models. As the film is composed of both solid polymers and fluid, this paper proposes a two-phase model. Based on the volume average method, the momentum equations are derived for both solid and liquid phases. In order to test our model, we built the porous film on the gold chip of the quartz crystal microbalance using the layer-by-layer method. The buildup process is based on the electrostatic interactions between anionic sodium hyaluronate and cationic chitosan by imitating the endothelial surface layer. By fitting our model to the experimental changes of the resonant frequency and dissipation factor, we get reasonable values of the film thickness, the porosity, the shear modulus of the solid phase, and the permeability. Compared with the existing models, the newly introduced permeability is an important property of the porous layer affecting the values of other parameters. Our model can provide more intrinsic properties of the self-assembled polymeric network and explain its interaction with the permeating fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call