Abstract

In the present study, a mathematical model is constructed to simulate the heat and mass transfer process in a counterflow multistage reciprocating dehumidifier unit. Four packings are positioned at different positions where a camshaft mechanism controls their linear motion. Packings dip inside the Calcium Chloride desiccant instead of the conventional spray technique, improving the wettability and dehumidification effect. Theoretical and experimental results are compared. System performance is analyzed by varying the number of packing and performance parameters such as outlet temperature, specific humidity, moisture effectiveness, moisture removal rate, mass transfer coefficient and pressure change. Results indicated that the system gave maximum moisture effectiveness, moisture removal rate and mass transfer coefficient equal to 0.75, 2.21 g/s and 15.08 kg/m2−s. Stage-wise evaluation of the performance shows that there is a significant improvement in the dehumidification performance by the addition of multiple stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.