Abstract

A process-oriented investigation of phosphate removal by ferric salt was carried out in this study. The kinetics of amorphous ferric phosphate (FePO4(s)) formation has been investigated over the pH range of 6.0-8.0 using sulfosalicylic acid as a competitive ligand. The FePO4(s) formation rate constants varied in a narrow range over the pH range examined in this study. And the maximum of (0.90±0.11)×104Lmol-1s-1 was obtained at pH7.5 and the minimum value of (0.05±0.01)×104Lmol-1s-1 was obtained at pH6.0. These values are two orders of magnitude lower than the rate constants for Fe(III) hydrolysis-precipitation, and hence, the extent of FePO4(s) formation when ferric ions are added to aqueous solution is extremely low. Subsequently, the characteristics of the amorphous ferric oxide (AFO) with different ages were investigated, and it was found that the BET surface area, the average pore width, and the charge capacitance were various for different AFO with various ages. Phosphate adsorption by AFO was significantly affected by AFO aging and the manner of adding Fe(III), which was successfully described by a diffuse layer model. By using surface sites concentration obtained, the kinetics constant of AFO aging could be calculated by a functional equation at a certain pH and time. Graphic abstract Description of the precipitation and aging processes for the phosphate removal by Fe(III)-ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call