Abstract

Phase image in tapping-mode atomic force microscope (TM-AFM) results from various dissipations in a microcantilever system. The phases mainly reflect the tip-sample contact dissipations which allow the nanoscale characteristics to be distinguished from each other. In this work, two factors affecting the phase and phase contrast are analyzed. It is concluded from the theoretical and experimental results that the phases and phase contrasts in the TM-AFM are related to the excitation frequency and energy dissipation of the system. For a two-component blend, it is theoretically and experimentally proven that there exists an optimal excitation frequency for maximizing the phase contrast. Therefore, selecting the optimal excitation frequency can potentially improve the phase contrast results. In addition, only the key dissipation between the tip and sample is found to accurately reflect the sample properties. Meanwhile, the background dissipation can potentially reduce the contrasts of the phase images and even mask or distort the effective information in the phase images. In order to address the aforementioned issues, a self-excited method is adopted in this study in order to eliminate the effects of the background dissipation on the phases. Subsequently, the real phase information of the samples is successfully obtained. It is shown in this study that the eliminating of the background dissipation can effectively improve the phase contrast results and the real phase information of the samples is accurately reflected. These results are of great significance in optimizing the phases of two-component samples and multi-component samples in atomic force microscope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call