Abstract

In this work, temperature field and weld pool geometry during gas tungsten arc welding of 304 stainless steel are predicted by solving the governing equations of heat transfer and fluid flow under quasi-steady state conditions. The model is based on numerical solution of the equations of conservation of mass, momentum, and energy in the weld pool. Weld pool geometry, weld thermal cycles, and various solidification parameters are then calculated by means of the model predictions. The model considers the effects of various process parameters including welding speed and heat input. It is found that the weld pool geometry, predicted by the proposed model, is in reasonable agreement with the corresponding experimentally measured ones. In addition, the solidification behavior of the weld pool can be predicted properly by the model predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call