Abstract
In this study, a beta-type 300-W Stirling engine is developed and tested, and a non-ideal adiabatic model is built and applied to predict performance of the engine. Engine torque, engine speed and shaft power output are measured under various operating conditions. The experiments are conducted for two different working gases (air and helium) and at various charged pressures and heating temperatures. Effects of regenerator wire mesh on the shaft power output are also examined. Results show that the shaft power output of the engine is much higher using helium as the working fluid than using air. Furthermore, as the charged pressure and the heating temperature are set at 8 bars and 850 °C and a No. 120 wire mesh is used in the regenerator, the shaft power of the engine can reach 390 W at 1400 rpm with 1.21-kW input heat transfer rate (32.2% thermal efficiency). The experimental data are compared with the numerical predictions to verify the theoretical model. It is found that the experimental data of the shaft power output closely agree with the numerical predictions. This implies that the theoretical model is valid and helpful in the engine design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.