Abstract

Electrically conductive composite nanofibers of polyvinylpyrrolidone (PVP) filled with multi-walled carbon nanotubes (MWCNTs) were prepared by electrospinning process. The complex permittivity and electromagnetic interference shielding effectiveness (EMI SE) of all composite nanofibers were measured in the X band frequency range 8.2–12.4 GHz. The electrical conductivity, real and imaginary part of permittivity, and EMI shielding behaviors of the composite nanofibers were reported as function of MWCNTs concentration. Electrical conductivity of MWCNTs/PVP composite nanofiber followed power law model of percolation theory having a percolation threshold ϕc = 0.72 vol% (~1 wt.%) and exponent t = 1.71. The total EMI SE of MWCNTs/PVP composite nanofibers increased up to 42 dB mainly base on the absorption mechanism. The EMI SE measured from experiments was also compared with the approximate value calculated from theoretical model. The obtained theory results confirmed that the selected model presented acceptable performance for evaluating the involved parameters and prediction of the EMI SE of composite nanofibers. The ability of the theoretical model to predict the EMI shielding by reflection and absorption was found to be a function of the frequency, thickness, permittivity, and conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.