Abstract
A theoretical study was conducted to investigate the cross-sectional configurations and the tensile forces of an air-inflated rubber dam anchored on the sidewall of the rigid base. A series of large-scale model tests were conducted using rubber dam models with a cross-sectional perimeter of 1.0 m and a length of 8.5 m. The results obtained from the analytical solutions agree well with those obtained from model tests. It is found that there is an optimum height of the rubber dam, especially for larger anchor depth with the increase of the inflated air pressure. The smaller the anchoring depth the higher the optimum inflated air pressure. The contact length between the rubber dam and the rigid base gradually decreases with the increasing inflated air pressure. The greater the anchor depth, the faster the contact length decreases to zero. Generally, the tensile force linearly increases with the increase of the normalized air pressure and the decrease of the anchor depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.