Abstract

Brain simulation techniques have demonstrated undisputable therapeutic effects on neural diseases. Invasive stimulation techniques like deep brain stimulation (DBS) and noninvasive techniques like transcranial magnetic stimulation (TMS) have been approved by FDA as treatments for many drug resist neural disorders and diseases. Developing noninvasive, deep, and targeted brain stimulation techniques is currently one of the important tasks in brain researches. Transcranial direct current stimulation (tDCS) and transcranial alternative current stimulation (tACS) techniques have the advantages of low cost and portability. However, neither of them can produce targeted stimulation due to lacking of electrical field focusing mechanism. Recently, Grossman et al. reported using the down beating signals of two tACS signals to accomplish focused stimulation. By sending two sine waves running at slightly different high frequencies (~2kHz), they demonstrated that they can modulate a “localized” neuron group at the difference frequency of the two sine waves and at the same time avoid excitation of neurons at other locations. As a result, equivalent focusing effect was accomplished by such beating mechanism. In this work, we show neither theoretically nor experimentally the beating mechanism can produce “focusing effect” and the beating signal spread globally across the full brain. The localized modulation effect likely happened right at the electrode contact sites when the electrode contact area is small and the current is concentrated. We conclude that to accomplish noninvasive and focused stimulation at current stage the only available tool is the focused TMS system we recently demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.