Abstract

The cyclic thermal swing adsorption (TSA) process for volatile organic compounds (VOCs) recovery from the waste air is studied theoretically and experimentally. Toluene is chosen as the volatile organic compound. Activated carbon Sorbonorit 4 is used as an adsorbent. The TSA cycle is operated in three steps: an adsorption step with cold feed, a desorption step with hot purge gas and a cooling step with cold inert gas. The desorption and cooling are affected by nitrogen circulated through a heater, an adsorber and a condenser. A nonequilibrium, nonisothermal mathematical model is developed to simulate temperature and concentration breakthrough curves for both adsorption and desorption steps. The computer simulation results are compared with the experimental data. A bench scale fixed bed adsorption unit was used for the experimental study. It is shown that the theoretical model predicts the experimental results well. The computer simulation results are used to study the effect of the purge gas and condensation temperature on the process efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.