Abstract
The electronic dipole transition moment functions of the A 2Π-X 2Σ+, B 2Σ+-X 2Σ+ and B 2Σ+-A 2Π transitions and the dipole moment function of the X 2Σ+ state of CO+ have been calculated using large contracted CI wavefunctions. The computed transition moment functions together with experimental potential energy curves were used to obtain radiative lifetimes of the excited electronic states B 2Σ+ and A 2Π. Radiative lifetimes of vibrational levels of the X 2Σ+ state were derived from the calculated dipole moment function. The high-frequency deflection technique was used to obtain radiative lifetimes of the ν′ = 0, 1,2 and 3 vibrational levels of the B 2Σ+ state and also radiative lifetimes of individual rotational levels of ν′ =0. The calculated radiative lifetimes are shorter than the measured ones by about 10%. The experimental ν′ dependence is reproduced by theoretical calculation. The calculated radiative lifetimes for the A 2Π state are in excellent agreement with lifetimes measured with an ion trap technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.