Abstract

Designing catalysts with high activity and selectivity for biomass conversion to fuels and chemicals requires the understanding and controlling of the bond scission mechanism in biomass derivatives. In the current study, ethylene glycol, the smallest polyol from cellulose with the same atomic C/O ratio as C5 and C6 sugars, is employed as a surrogate molecule for controlling the bond scission sequence of O–H, C–H, C–O, and C–C bonds. A promising methodology for catalyst design is established in this work by constructing a microkinetic model to predict the activity and selectivity for ethylene glycol transformation reactions on molybdenum carbide (Mo2C) and metal-modified Mo2C surfaces, followed by supplementing the theoretical prediction with temperature program desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments on model surfaces. The fundamental insights from the theoretical approach and experimental results thus helps to guide the catalyst design and reduce the number of catalyst candidates in future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.