Abstract

The electronic structure and chemical properties of catalysts prepared by the electroless deposition (ED) of Ag onto Pt/SiO 2 were studied using a combination of X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. XPS studies revealed a negative shift (up to −0.75 eV) in the Ag 3 d binding energy (BE) relative to bulk Ag. Both the magnitude and direction of the shift are consistent with DFT calculations of model Ag/Pt(1 1 1) surfaces. DFT calculations have also been employed to study the adsorption of two probe molecules, carbon monoxide and 1-epoxy-3-butene (EpB), on the model surfaces. Combined with previously published reports, the results presented here suggest that (1) the AgPt/SiO 2 catalysts that are most active for hydrogenation of the EpB olefin function consist of an adlayer of Ag on Pt rather than a surface or bulk alloy and that (2) the higher activity and selectivity of ED-prepared Ag–Pt/SiO 2 catalysts for C C hydrogenation of EpB to 1-epoxybutane are consistent with computed electronic (ligand) and bifunctional effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.