Abstract
Bubbly liquids are widely present in the natural environment and industrial fields, such as seawater near the ocean bottom, the multiphase flow in petroleum reservoirs, and the blood with bubbles resulting in decompression sickness. Therefore, accurate measurement of the gas content is of great significance for hydroacoustic physics, oil and gas resources exploration, and disease prevention and diagnosis. Trace bubbles in liquids can lead to considerable changes in the acoustic properties of gas–liquid two-phase media. Acoustic measurements can therefore be applied for trace bubble detection. This study derived the reflection coefficient of acoustic waves propagating in a sandwich layering model with liquid, bubbly liquid, and liquid. The influences of gas contents on the reflection coefficient at the layer interface were analyzed based on theoretical calculations. It was revealed that the magnitude of the reflection coefficient and the frequency interval between its valleys have a quantitative correlation with the gas contents. Thus, a novel means to detect the contents of trace bubbles was proposed by evaluating the reflection coefficients. The reflection features of a thin layer with bubbly liquid were then studied through experiments. It was validated by acoustical measurements and theories that the reflection coefficient is considerably sensitive to the change of gas contents as long as the gas content is tiny. With the increasing gas content, the maximum value of the reflection coefficient increases; meanwhile, the frequency intervals between the valleys become smaller. However, when the gas content is extensive enough, e.g., greater than 1%, the effect of the change of gas content on the reflection coefficient becomes inapparent. In that case, it is not easy to measure the gas content by the acoustic reflection signals with satisfying precision. This proposed method has potential applications for the detection of trace gas bubble content in several scenarios, e.g., decompression illness prevention and diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.