Abstract

The anti-corrosion features of 1-dodecyl-3-phenylquinoxalin-2(1H)-one (QO12) for carbon steel CS were evaluated in a 1 M HCl solution using potentiodynamic polarization (PDP), electrochemical impedance (EIS) and UV-visible spectroscopy, and scanning electron microscopy (SEM), as well as quantum-chemical methods. The inhibition performance achieves a maximum of 95.33% at 0.001 M. The PDP study revealed that QO12 acts with the character of a mixed-type inhibitor. The EISs mention that the process of corrosion for CS is essentially predominated by the transfer-of-charge mechanism. Moreover, quinoxalinone adsorption follows the Langmuir adsorption isotherm. SEM snapshots show no deterioration after the contribution of QO12 compared to the reference electrolyte. Theoretical calculations suggest that the envisaged inhibitor presents a perfect arrangement capacity through the structure of quinoxalinone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.