Abstract

In lattice angle steel transmission tower, as the bolt diameter is small and member connection is relatively thin, lower clamping force is commonly used in bolted joint. It is common in lattice tower during full tower tests, joint slippage occur even under design load. However, traditionally trussed beam hybrid finite element model without explicitly considering slippage effects has been widely used in the analysis of the tower. In this paper, the HD-1 tower was experimentally studied under various static load cases, and several numerical models with including joint eccentricity and slippage are established. After comparing the theoretical analysis results and the experimental results, the following conclusions are presented: joint eccentricity almost has not effects on leg member axial force; Among all the studied load cases, joint slippage effects the leg member force most under torsional condition than the other load conditions; Numerical model with including joint slippage effects yield much better axial force results in leg member compared with experimental test results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.