Abstract

In view of the current situation in which the OD-stretch vibrational spectra have been scarcely computed with non-polarizable rigid D2O models, we investigate the IR and Raman spectra of D2O by using a newly-reported model TIP4P/2005-HW. From the comparison between the calculations and experimental data, we find the excellent performance of TIP4P/2005-HW for vibrational spectroscopy of D2O in the same manner as TIP4P/2005 for H2O, although one may still conveniently employ an alternative method that regards OH as putative OD to calculate the OD-stretch spectra with similar quality from TIP4P/2005 trajectories. We also demonstrate that the appropriate setting for the spectral simulation of D2O under the time-averaging approximation reflects the slower dynamics (i.e., slower motion of translation and rotation due to the heavier mass and stronger hydrogen bond) of D2O than H2O. Moreover, we show from the theoretical calculations that the established interpretation of the OH-stretch spectra of H2O is finely applicable to the OD-stretch of D2O.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call