Abstract

The threshold of a laser-induced breakdown of air is determined experimentally and theoretically. We find that the ionization of air has two steps: the first step is a multi-photon ionization process, which provides enough “seed electrons” to initiate the next step, and the second one is predominated by cascade ionization, which continues to produce free electrons geometrically until the critical free-electron density for breakdown is reached. So a two-step model based on the Morgan ionization model is established to describe the breakdown process. It is found that the time node dividing the two steps is about 9.8 ns in atmospheric air, and the threshold derived from the two-step model proposed here is more consistent with the experimental results than traditional ionization model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call