Abstract

Metal organic complexes, diaceto bis benzimidazole cobalt(II) and diaceto bis benzimidazole copper(II), are synthesized by a simple chemical route. The synthesized powders are doped in PMMA with 1, 3, 5 wt% and deposited as free standing films of thickness ∼1 μm. For theoretical simulation, metal organic complex (MOC) embedded into the PMMA matrix is subjected to polarizability and hyperpolarizability calculations using the PM6 algorithm in MOPAC2012 package. It is found that the minimum interaction distance between PMMA and MOC is about 34 nm and does not vary with respect to the dopant. The copper complex shows higher interaction energy with the polymer matrix than the cobalt complex. Time dependent Hartree Fock approach is used to calculate the α, β and γ values for static, 0.25 and 0.5 eV energies; the cobalt complex shows higher polarizability and hyperpolarizability than the copper complex. Experimentally, the optical absorption, thermo-optic coefficient, nonlinear absorption coefficient and nonlinear refractive index of the samples are determined. The thermo-optic coefficients of the samples are seen to increase with increasing dopant concentration. From open aperture Z-scan studies the films are found to exhibit reverse saturable absorption behaviour, and from the closed aperture Z-scan all samples are found to exhibit self-focusing effects. The calculated third order susceptibility is in the order of 10−5 esu. The optical limiting properties are studied at 650 nm using a 20 mW laser and all the samples are found to exhibit good optical limiting in the operating wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call