Abstract
With the development of space technology, the functions of lunar vehicles are constantly enriched, and the structure is constantly complicated, which puts forward more stringent requirements for its ground micro-low-gravity simulation test technology. This paper puts forward a high-precision and high-dynamic landing buffer test method based on the principle of magnetic quasi-zero stiffness. Firstly, the micro-low-gravity simulation system for the lunar vehicle was designed. The dynamic model of the system and a position control method based on fuzzy PID parameter tuning were established. Then, the dynamic characteristics of the system were analyzed through joint simulation. At last, a prototype of the lunar vehicle's vertical constant force support system was built, and a micro-low-gravity landing buffer test was carried out. The results show that the simulation results were in good agreement with the test results. The sensitivity of the system was better than 0.1%, and the constant force deviation was 0.1% under landing impact conditions. The new method and idea are put forward to improve the micro-low-gravity simulation technology of lunar vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.