Abstract

Wave group is important in ocean wave theory and applications. In the past, nonlinear interaction among wave groups has been studied on the basis of the nonlinear Schrodinger equation. Using this theoretical approach, we found that the nonlinear interaction among wave groups causes asymmetry in the shape of the wave envelope (steeper in the front of the curve of the envelope). An important consequence of this asymmetry is that the highest wave in a wave group appears one individual wave length ahead of the center of the wave group. Further results show that the degree of envelope asymmetry increases with increasing spectral width and the wave steepness. This theoretical analysis has been supplemented by a systematic experimental study of wind waves. Laboratory and some open sea wave data were analyzed. The results show that the shape of the wind wave envelope of wind waves has the same asymmetry predicted by the theoretical approach. The observed degree of deformation of the envelope also increases with increasing spectral width and the wave steepness as predicted by theory. These conclusions have important ramifications for practical applications of ocean wave theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.