Abstract
The goal of this work was to investigate the matrix effect of copper in the presence of sodium or magnesium in a laser-induced plasma. Varying amounts of copper were mixed and pressed with a constant amount of sodium or magnesium and a stearic acid binder. Experimental parameters such as delay time and laser pulse energy were varied to observe trends in the emission intensity of the Na I 588.99nm, Na I 589.59nm, Mg I 277.98nm, and Mg II 279.08nm lines. Experimental observations are supported by theoretical calculations and modeling that show the Na I and Mg I emission intensities increase in the presence of copper while the Mg II line intensity decreases due to the increase in electron density (Ne) of the plasma when copper is added. The increase in electron density changes the population of the atomic species within the plasma through an increase in recombination of ions with electrons, shifting the populations toward more neutral states, providing an explanation for the observed matrix effects found in these, and many previous, studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.