Abstract

AbstractCharge injection is known as the major source of dark current under an applied reverse bias, which directly influences the performance of organic photodetectors with diode architecture. However, it is unclear which of various contributions, such as electron flow through the junction, shunt leakage, thermionic emission, and tunnelling, are dominant. This study investigates the thermionic emission and tunneling models to describe the origin of experimentally measured dark current generated in an organic photodetector. To elucidate the dominant mechanism, the barrier energies at anodic contacts are set from 0.6 to 1.0 eV using photosensitive layers composed of different acceptors. A linear relation is found between the natural logarithm of the dark current density under reverse bias and the square root of the barrier height, which strongly suggests direct tunneling as dominant mechanism for dark current injection. This conclusion is strengthened by temperature dependent dark current analysis. Further knowledge of the dominant mechanism by charge injection can help devise an effective strategy to suppress dark current for effective organic photodetector device implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.