Abstract
ABSTRACTThis paper presents the results of an experimental and theoretical investigation of the magnetic fracture behaviour of double cantilever beam (DCB) specimens. DCB tests were conducted on ferritic stainless steel SUS430 in the bore of a superconducting magnet at room temperature. A simple experimental technique using strain gauges was used to determine the stress intensity factor. The experiments show the predicted increase in the stress intensity factor with increasing magnetic field. The theoretical analysis is based on a beam‐plate theory for magnetoelastic interactions in a soft ferromagnetic material. Numerical calculations are carried out, and the stress intensity factor is obtained for several values of magnetic field. A comparison of the stress intensity factor is made between theory and experiment, and the agreement is good for the magnetic field considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.